The ability to identify interesting and repetitive substructures is an
essential component to discovering knowledge in structural data. We describe a
new version of our SUBDUE substructure discovery system based on the minimum
description length principle. The SUBDUE system discovers substructures that
compress the original data and represent structural concepts in the data. By
replacing previously-discovered substructures in the data, multiple passes of
SUBDUE produce a hierarchical description of the structural regularities in the
data. SUBDUE uses a computationally-bounded inexact graph match that identifies
similar, but not identical, instances of a substructure and finds an
approximate measure of closeness of two substructures when under computational
constraints. In addition to the minimum description length principle, other
background knowledge can be used by SUBDUE to guide the search towards more
appropriate substructures. Experiments in a variety of domains demonstrate
SUBDUE’s ability to find substructures capable of compressing the original data
and to discover structural concepts important to the domain. Description of
Online Appendix: This is a compressed tar file containing the SUBDUE discovery
system, written in C. The program accepts as input databases represented in
graph form, and will output discovered substructures with their corresponding
value.